منابع مشابه
Bernd Ammann
Let M be a compact manifold with a fixed spin structure χ. The Atiyah-Singer index theorem implies that for any metric g on M the dimension of the kernel of the Dirac operator is bounded from below by a topological quantity depending only on M and χ. We show that for generic metrics on M this bound is attained.
متن کاملRhombellanic Crystals and Quasicrystals
Design of some crystal and quasicrystal networks, based on rhombellane tiling,is presented. [1,1,1]Propellane,is a synthesized organic molecule; its hydrogenated form, the bicyclo[1.1.1]pentane,may be represented by the complete bipartite graph K2,3 which is the smallest rhombellane. Topology of translational and radial structures involving rhombellanes is described in terms of vertex symbol, c...
متن کاملBernd Ammann , Mattias Dahl
We associate to a compact spin manifoldM a real-valued invariant τ(M) by taking the supremum over all conformal classes of the infimum inside each conformal class of the first positive Dirac eigenvalue, when the metrics are normalized to unit volume. This invariant is a spinorial analogue of Schoen’s σ-constant, also known as the smooth Yamabe invariant. We prove that if N is obtained from M by...
متن کاملThe Ammann-Beenker tilings revisited
This paper introduces two tiles whose tilings form a one-parameter family of tilings which can all be seen as digitization of two-dimensional planes in the four-dimensional Euclidean space. This family contains the Ammann-Beenker tilings as the solution of a simple optimization problem.
متن کاملAmmann Tilings in Symplectic Geometry
In this article we study Ammann tilings from the perspective of symplectic geometry. Ammann tilings are nonperiodic tilings that are related to quasicrystals with icosahedral symmetry. We associate to each Ammann tiling two explicitly constructed highly singular symplectic spaces and we show that they are diffeomorphic but not symplectomorphic. These spaces inherit from the tiling its very inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 1992
ISSN: 0179-5376,1432-0444
DOI: 10.1007/bf02187830